
Recommendations to Support Computational Thinking in the Elementary Classroom
Anne Estapa, Iowa State University

Amy Hutchison, George Mason University
Larysa Nadolny, Iowa State University

NOTE: This is a pre-press version of the manuscript published in Technology and Engineering

Teacher. The published article can be accessed here online:
https://www.iteea.org/Publications/Journals/TET/TETDecJan2018.aspx

Please cite as:
Estapa, A., Hutchison, A., & Nadolny, L. (2017). Recommendations to support coding in the

elementary classroom. Technology and Engineering Teacher, 77(4), 25-29.

Mobile applications intended to provide exposure to the concepts of computer

programming and coding, referred to as coding apps, are becoming increasingly recognized as

useful tools for classroom instruction (Hutchison, Nadolny, & Estapa). For example, the Scratch

Jr app provides opportunities for users to create stories, games, and animations through visual

coding and, as a result, experience what it is like to be a computer programmer. These

programming apps can be used to expose students not only to computer programming or coding,

but they also teach mathematics concepts and the broader skills associated with computational

thinking by asking students to engage in tasks that require them to do things such as group

variables, apply conditional logic, develop algorithmic functions, calculate angles within

geometric shapes and more. Computational thinking described as a problem solving process and

can be defined as follows:

Formulating problems in a way that enables us to use a computer and other tools to help

solve them; logically organizing and analyzing data; representing data through

abstractions such as models and simulations; automating solutions through algorithmic

thinking (a series of ordered steps); identifying, analyzing, and implementing possible

solutions with the goal of achieving the most efficient and effective combinations of steps

and resources; and generalizing and transferring this problem solving process to a wide

variety of problems (Society of Technology in Education [ISTE] and the Computer

Science Teachers Association [CSTA]) (Israel, Pearson, Tapia, Wherfel, & Reese, 2015,

p. 263).

Computational thinking is an important and necessary way of thinking for computer

programmers and other professionals in science, technology, engineering, and mathematics

(STEM). Research on emerging practices around computational thinking that is developed

through coding initiatives in schools report that elementary children typically learn how to

operate technologies rather than learn how to develop new technologies (Israel, et al., 2015). As

a result students in elementary schools experience only the receiving end of technology (Burke &

Kafai, 2014). This lack of production potentially limits the effectiveness of technology

integration since early experiences with computational thinking, as means of problem solving in

abstract ways, has the potential to improve attitudes, engage students and enhance programing

skills (Israel, et al., 2015). Thus, it is important to provide students with early exposure to

computational thinking. Yet, with so many apps and so little guidance, it can be difficult to know

how to integrate these apps into classroom instruction. Therefore, the purpose of this article is to

provide recommendations for teachers, drawn from research, on how to select apps and begin

practices that support computational thinking.

Recommendation #1: Select Computationally Rich Coding Apps

To ensure that an app is appropriate for all learners within the classroom, the idea of “low

floor, high ceiling” should be a guiding principle. Grover and Pea (2013) express the idea to be

that computational thinking tools [coding apps] for elementary students should be easy for

beginners to start an activity and create programs or codes (low-ceiling). However, the tool

should also be powerful and extensive enough to satisfy the attention and learning of more

experienced or advanced programmers (high-ceiling). Apps with this principle in mind often

follow a use-modify-create progression to allow a learner to experience each stage to support

learning and engagement. Therefore, in reviewing apps for implementation within the classroom,

the authors recommend that teachers select apps that allow students to increase their engagement

and production with the app as their skill increases.

 Grover and Pea (2013) highlight the following apps as examples that allow early

experiences to focus on designing and creating: Scratch, Alice, Kodu, and Greenfoot. Many of

the apps provided use a visual programming language, which allows programmers to snap visual

programming codes together to control actors on the screen. This format supports computational

thinking and provides students with the opportunity to create their own digital media products.

Yet, it is simple enough that beginning users can be successful with the apps. The authors

highlight this process in Figure 1, with an example from Scratch Jr. In this example, the student

selects a series of commands and places them in a logical sequence to make the animals move

around the barn. Further, this app allows for the addition of a recorded speech response

(represented by the microphone) that plays as the movement on the screen occurs. This example

shows how simple it is to naviagate a coding app such as Scratch Jr. and apply computational

thinking skills (low ceiling). Yet, the app also provides opportunities for students to develop and

apply more complex computational thinking by creating original characters, developing and

connecting multiple scenes, chaning colors and words, etc. (high ceiling).

Figure 1. Example of snap coding from Scratch Jr.

Recommendation #2: Become a Learner

For teachers to effectively integrate coding apps into mathematics instruction it may be

helpful for teachers to first engage with these apps as a learner. Some teachers may believe that

coding is too difficult to learn or too far outside the realm of their expertise. However, coding

apps, and many coding initiatives, are designed for beginners and require no previous coding

experience. Many apps are designed with a game-like format or simple tutorials that teach the

user what he or she needs to know to engage in the activities presented within the app. By

engaging with coding apps as a learner, teachers can gain experience with the apps while also

determining the specific concepts that can be taught through the app.

There are many popular apps and websites that users can try to gain a better

understanding of the function and purposes of coding apps. The authors recommend that teachers

get started with Scratch or Scratch Jr., depending on their own skill level and the grade level they

teach. Scratch and Scratch Jr. (scratch.mit.edu) are both free and allow users to create

animations, art, game, stories or more. Scratch is targeted at ages 8-16 and allows users to

program their own content, but also has an online community in which teachers can engage to

gets resources and ideas for integrating Scratch into their classroom. Scratch Jr. is targeted at

younger students, ages 5-7, and is a great tool for those who are inexperienced with coding apps.

Both apps teach computational thinking as they require students to apply conditional logic and

solve problems to get the outcome they want - creation of a game, image, animation, etc.

Similarly, many coding apps require the application of mathematics skills such as group

variables, apply conditional logic, develop algorithmic functions, and calculating angles within

geometric shapes. Teachers can consider how these skills can be taught through the apps as they

explore them for themselves.

Recommendation #3: Use Apps for Active Learning

Student content creation within a coding app can meet the needs of learners in several

ways. The 2016 National Education Technology Plan (US Department of Education, 2016) asks

all educators to consider equity in the use of classroom technology, particularly considering

differences in passive or active learning through technology. Differences in the way technology

is used in the classroom for either more active creation with digital content and tools or more

passive consumption of information from digital devices has been termed the “digital use divide”

(US Department of Education, 2016). By engaging all students in the active, creative use of

coding apps, the teacher is helping to bridge the digital use divide. In addition to classroom

activities, the authors recommend providing students, parents, and/or guardians with additional

online resources to encourage engagement with groups underrepresented in the STEM fields. For

example, Black Girls Code (http://www.blackgirlscode.com/) was created by Kimberly Bryant in

partnership with major corportations in the fields of technology and finance. Students can attend

workshops, join after school communities, and participate in hackathons across the nation. Girls

who Code (https://girlswhocode.com/) hosts summer camps and after school clubs. If online

resources do not meet the needs of students, teachers can consider starting a coding club using

the free resources at Code Academy

(https://www.codecademy.com/schools/curriculum/resources) or the ready-made lessons plans

for after school clubs using the Tynker app (see Figure 2).

Figure 2. Sample lesson activites from Tynker.com.

Recommendation #4: Bridge Learning Across the Disciplines

Recently, several researchers have illustrated how concepts of computational thinking can be

aligned with other content areas to provide authentic learning experiences (E.g., Jona et al.,

2014; Sengupta et al., 2013; Weintrop et al., 2014). Advocates of computational thinking

contend that computational thinking can be viewed as at the core of all STEM disciplines

(Henderson, Cortiina, Hazzan, & Wing, 2007), and has the potential to bridge learning within

and across discipline areas. Importantly, coding apps can be used to help students begin thinking

like a scientist, mathematican, or engineer. For example, coding apps can be used to develop

what Lucas and Hanson (2014) refer to as Engineering Habits of Mind (EHOM), which include:

(1) systems thinking, (2) adapting, (3) problem-finding, (4) creative problem solving, (5)

visualizing, and (6) improving. For instance, as part of science lesson, teachers could ask

students to create an animated demonstration of the life cyle of a butterfly using a coding app or

explore the topic of adaptations (Figure 3). As part of that process, teachers could also teach and

integrate engineering habits of mind such as creative problem-solving (EHOM 4) by having

students generate coding and design solutions together and then by adapting (EHOM 2) their

code and design to improve (EHOM 6) their demonstration.

Figure 3. Buterfly Coding Challenge

Further, engaging with coding apps can also help students develop digital literacy skills

and exposure to disciplinary vocabulary by introducing them to specialized language and

opportunites to create and produce new information in digital contexts (Hutchison, Nadolny, &

Estapa, 2016). Through the use of coding apps students can learn coding skills, ranging from

basic to complex, can learn how to devise and communicate effective messages through a

combination of images, text, and color. Further, students will gain experience that will support

their development towards proficiency with the International Society for Technology (ISTE)

Standards for Students (2016), such as becoming computational thinkers and creative

communicators.

To maximize learning when implementing coding apps into the classroom teachers

should begin by connecting the mathematical content learning within the app to one other

Butterfly Coding Challenge
National Science Education Standards: K-4 The Characteristics of Organisms: Each plant or
animal has different structures that serve different functions in growth, survival and
reproduction.

Now that you are familiar with how some butterflies use camouflage or disguise to hide
themselves from predators, it is time to help your own butterflies survive!

1. Choose two butterflies from a bonatical garden website, such as
http://rgbutterflyapp.com/ or http://www.missouribotanicalgarden.org/

2. Download images of your selected butterflies to your iPad.
3. Follow the same steps above to find and download a picture of a predator of butterflies.
4. Create a background in your coding app that will help hide those butterflies.
5. Using the sequence and looping tools in your coding app (control and motion in

Scratch), move the butterflies and the predator, showing how a butterfly can survive by
using its adaptations.

Extension
Turn your story into a survival game! Use controls and variables to allow the player to earn
points when the predator touches the butterfly. For example, when the space bar is clicked, the
wasp will move 4 steps in a random direction until it touches the butterfly.

discipline, building connections one content area at time. This will ensure efforts are purposeful

and that students will be shown the connection among the STEM disciplines. For example, when

working on an app focused on computational thinking goals, through problem solving and

representing data using graphs and/or tables (Mathematics) students could also engage in

conversations around patterns in coding (Technology), create stories to provide context for what

is happening on the screen (Literacy) or re-create a code using classroom materials to design and

re-design paths given specific criteria (Engineering). In this way, the learning experience

connects student understanding within and across STEM disciplines, as recommended within

the Next Generation Science Standards (NGSS). In Table 1, the authors highlight how a

computational thinking coding experience might align with NGSS (NGSS, 2013).

Table 1. NGSS K-2 Engineering Design Standards

Performance
Expectation

Ask questions, make observations, and gather information about a
situation people want to change to define a simple problem that can be
solved through the development of a new or improved object or tool.

Science and
Engineering
Practices

Ask questions based on observations to find more information about
the natural and/or designed world(s). (K-2-ETS1-1)

Disciplinary
Core Idea

A situation that people want to change or create can be approached as a
problem to be solved through engineering. (K-2-ETS1-1)

Before beginning to design a solution, it is important to clearly
understand the problem. (K-2-ETS1-1)

Through the integration process, the lesson or activity implemented supports student learning

within and across STEM content areas.

Conclusion

The authors support claims that early access to and experiences with computational

thinking will strengthen elementary students’ computational thinking abilities while enhancing

their understanding of mathematics and the connection of mathematics to other disciplines. In

defining computational thinking as a way for students to not only use computers to solve

problems but also as a means to create and represent model solution strategies, student learning

reaches beyond programming. As teachers explore options and purposefully integrate apps into

their classroom following the recommendations in this article, students will be provided with the

opportunities and tools they need to learn. The interest generated from such experiences has the

potential to prime students for success within the classroom and in future computational thinking

based opportunities.

References

Burke, Q., & Kafai, Y. B. (2014). Decade of game making for learning: From tools to
 communities. Handbook of digital games (pp. 689-709).

Code.org (2014). 2014 annual report. Retrieved from http://code.org/about/2014.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State of the
 Field. Educational Researcher, 42(1), 38-43.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007, March). Computational thinking. In ACM
 SIGCSE Bulletin (Vol. 39, No. 1, pp. 195-196). ACM.

Hutchison, A., Nadolny, L., & Estapa, A. (2015). Using coding apps to support literacy

instruction and develop coding literacy. The Reading Teacher, 1-11.

International Society for Technology in Education. (2016). ISTE standards for students.

Retrieved from https://www.iste.org/standards/standards/for-students-2016

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners
 in school-wide computational thinking: A cross-case qualitative analysis. Computers &
 Education, 82, 263-279.

Jona, K., Wilensky, U., Trouille, L., Horn, M., Orton, K., Weintrop, D., et al. (2014). Embedding
 computational thinking in science, technology, engineering, and math (CT-STEM).
 Presented at the Future Directions in Computer Science Education Summit Meeting,
 Orlando, FL.

Lee, Y. J. (2011). Empowering teachers to create educational software: a constructivist approach
 utilizing Etoys, pair programming and cognitive apprenticeship. Computers &
 Education, 56(2), 527e538. http://dx.doi.org/10.1016/j.compedu.2010.09.018.

Lucas, B. & Hanson, J. (2014). Thinking like an engineer: Using engineering habits of mind and

signature pedagogies to redesign engineering education. International Journal of
Engineering Pedagogy, 6(2), 4-13.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
 through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-
 61.

NGSS Lead States (2013). Next generation science standards: For states, by states. Washington,

DC: National Academies Press. 

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
 computational thinking with K-12 science education using agent-based computation: a
 theoretical framework. Education and Information Technologies, 18, 351e380.
 http://dx.doi.org/10.1007/s10639-012-9240-.

U.S. Department of Education (2016). Future Ready Learning: Reimagining the Role of

Technology in Education. Washington, D.C. Retrieved from
http://tech.ed.gov/files/2015/12/NETP16.pdf

Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Jona, K., Trouille, L., et al. (2014). Defining
 computational thinking for science, technology, engineering, and math. Poster
 presented at the Annual Meeting of the American Educational Research Association
 (AERA 2014), Philadelphia, USA.

Wing, J. (2006). Computational thinking. Communications of the ACM,
 49(3), 33–36.

