
https://doi.org/10.1177/10534512211024939

Intervention in School and Clinic 2022, Vol. 57(4) 262–267
© Hammill Institute on Disabilities 2021

Article reuse guidelines: sagepub.com/journals-permissions
DOI: 10.1177/10534512211024939

isc.sagepub.com

Technology Trends
Cathy Newman Thomas, Associate Editor

Aspects of computer science and sometimes computer sci-
ence standards increasingly are becoming part of main-
stream instruction in elementary schools. To date 33 states
have computer science standards (see the list of all states at
Code.org, 2019). However, these standards are relatively
new and not all states have computer science standards.
Little is known about how to best instruct students in under-
standing computer science standards and developing related
skills such as programming. This is especially true for stu-
dents with high-incidence disabilities.

Many of the computer science initiatives to date have
been focused on bringing computer science awareness and
opportunities to groups that have historically been underrep-
resented. These attempts are focused on closing the gender
and diversity gap that exists in computing-related fields. For
example, organizations such as Girls Who Code (https://
girlswhocode.com), Brown Girls Code (https://www.brown-
girlscode.org), and Black Girls Code (http://www.black-
girlscode.com) emphasize the importance of giving females,
especially females of color, the opportunity to learn com-
puter science. However, there has been much less effort
aimed at helping students with high-incidence disabilities,
who make up about 73% of all students with disabilities
(National Center for Education Statistics, 2017). High-
incidence disabilities include mild intellectual disabilities

(ID), learning disabilities, and emotional and behavioral dis-
orders (EBD) (Bryant et al., 2017). Likewise, little is known
about how to support students with high-incidence disabili-
ties in learning computer science skills. In this column, an
approach for planning instruction to support students with
disabilities in the area of computer science is presented.

Computer Science in the Elementary
Grades

In the elementary grades, much of the emphasis of com-
puter science instruction is aimed at developing computa-
tional thinking and beginning coding skills. Computational
thinking skills are essential for everything from learning in
the content areas to being successful in workplace settings.
Computational thinking is used by professionals including
coaches, chefs, soldiers, delivery drivers, teachers, and soft-
ware engineers. Although definitions of computational
thinking vary, computational thinking is generally defined

1024939 ISCXXX10.1177/10534512211024939Intervention in School and ClinicHutchison and Evmenova
research-article2021

1George Mason University, Fairfax, VA, USA

Corresponding Author:
Amy Hutchison, George Mason University, 4400 University Dr., MS 4B3,
Fairfax, VA 22030, USA.
Email: ahutchi9@gmu.edu

Planning Computer Science Instruction for Students
With High-Incidence Disabilities

Amy Hutchison, PhD1, and Anya S. Evmenova, PhD1

Abstract
States increasingly are adopting computer science standards to help students develop coding and computational thinking
skills. In an effort to support teachers in introducing computer science content to their students with high-incidence
disabilities, a new model, computer science integration planning plus universal design for learning (CSIP+), offers ways
to integrate computational thinking and coding into content area instruction. This column presents an example of how
a teacher might implement the CSIP+ model when designing instruction accessible to all learners. Guiding questions to
support teachers at each phase of the planning cycle are provided.

Keywords
computer science, lesson planning, universal design for learning, CSIP+

https://us.sagepub.com/en-us/journals-permissions
https://isc.sagepub.com
https://girlswhocode.com
https://girlswhocode.com
https://www.browngirlscode.org
https://www.browngirlscode.org
http://www.blackgirlscode.com
http://www.blackgirlscode.com
mailto:ahutchi9@gmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10534512211024939&domain=pdf&date_stamp=2021-06-24

Hutchison and Evmenova	 263

as “the conceptual foundation required to solve problems
effectively and efficiently (i.e., algorithmically, with or
without the assistance of computers) with solutions that are
reusable in different contexts” (Shute et al., 2017, p. 151).
The primary components generally included as part of com-
putational thinking are sequencing, abstraction, decomposi-
tion, and algorithmic thinking (Shute et al., 2017). Although
the term computational thinking originated in the field of
computer science (Wing, 2006), it is now widely believed
that computational thinking skills are broadly applicable
beyond computer science (Berland & Wilensky, 2015).
Being able to engage in computational thinking is believed
to be beneficial for solving problems of all kinds.
Furthermore, although computational thinking skills are not
the same as coding skills, these skills are necessary and ben-
eficial for learning to code (Israel et al., 2015).

Similar to computational thinking, coding literacy is
increasingly considered to be an essential skill (Hutchison
et al., 2016). Vee (2017) argued that coding has moved
beyond a necessary skill for high demand fields to include
elements of expression, collaboration, and creativity.
Further, coding helps students organize their thinking and
express their ideas (scratchjr.org, 2015). The primary
approach for developing coding skills is through the use of
digital tools that employ a visual programming language or
block-based coding such as Scratch (www.scratch.mit.edu)
and Scratch Junior (see https://scratch.mit.edu/educators
for more information). With block-based programming,
users drag and drop command blocks in a sequential fashion
to create animations and other creative products.

For all of the aforementioned reasons, it is essential that
the needs of students with high-incidence disabilities are

Figure 1.  The computer science integration planning plus planning model.

www.scratch.mit.edu
https://scratch.mit.edu/educators

264	 Intervention in School and Clinic 57(4)

considered when designing instruction on computational
thinking and coding. Aspects of computational thinking and
coding that have previously been identified as difficult for
students with high-incidence disabilities include (a) devel-
oping and executing multistep procedures, (b) conceptual-
izing and following conditional commands, and (c)
understanding and applying new vocabulary, such as algo-
rithms (Israel et al., 2015). There are also many other
aspects of computational thinking and coding that are likely
to be difficult for students with high-incidence disabilities,
such as (a) moving beyond copying and modifying a code
that is given to them to planning their own creative project,
(b) determining what code is needed to create what they
have planned, and (c) finding and fixing problems in the
code as they arise.

A Model for Students With Disabilities

In a project funded by the National Science Foundation, a
new approach to support elementary students with high-inci-
dence disabilities in learning computer science was pro-
posed. As part of that project, the CSIP+ model was
developed to provide teachers with an approach for integrat-
ing computational thinking and coding into content area
instruction. In this case, content area instruction is defined as
one of the knowledge domains such as literacy, math, sci-
ence, and social studies. By integrating computational think-
ing and coding into content area instruction, students with
disabilities have the opportunity to learn these skills just as
other underrepresented groups of students do. The acronym
CSIP stands for computer science integration planning cycle.
This approach was adapted from an existing instructional
planning tool called the technology integration planning
cycle (Hutchison & Woodward, 2014). In turn, CSIP+
includes the integration of the universal design for learning
(UDL) cycle of instructional planning (Rao & Meo, 2016)
and the UDL guidelines and checkpoints (CAST, 2018) into
the CSIP approach. The UDL cycle of instructional planning
offered ways to proactively incorporate three the UDL prin-
ciples (i.e., multiple means of engagement, multiple means
of representation, multiple means of action/expression), nine
guidelines, and 31 checkpoints into UDL-based lessons (see
http://udlguidelines.cast.org for more information). When
the UDL cycle of instructional planning was integrated with
the CSIP, the resulting CSIP+ planning model helped teach-
ers focus on using UDL principles to integrate computer sci-
ence into content area instruction. Figure 1 shows the CSIP+
planning model.

Explanation of the Model

As part of the CSIP+ model, a list of questions was devel-
oped to guide teachers in implementing each phase of the

planning cycle. The CSIP+ checklist supported an instruc-
tional design into which teachers integrated computer sci-
ence and also followed the UDL guidelines to ensure that the
instruction was appropriate for all students. A list of ques-
tions follows that accompany each step of CSIP+ model.

Step 1: Instructional Goals and Outcomes

In Step 1, teachers start by selecting an instructional goal,
learning objectives, and outcomes for the lesson. A teacher
should consider the following questions:

•• What content area instructional standards am I plan-
ning to teach?

•• Which computer science standards or objectives
could be integrated with the content area standard(s)
I plan to teach?

•• What are the goals or objectives and intended out-
comes of the lesson when the content area and com-
puter science standards are combined? What are
students expected to learn in my lesson?

•• What learner characteristics and barriers in the class-
room might interfere with students reaching these
goals?

Step 2: Instructional Approach and Assessment

Considerations guiding Step 2 of the CSIP+ model include
the following:

•• To what extent should my lesson or unit include
direct instruction, modeling, guided practice, inde-
pendent practice, and collaborative practice or work?

•• Will the lesson or unit be longer or shorter in
duration?

•• How can I use multimedia materials and digital tools
to represent content in multiple forms, highlight crit-
ical features, activate background knowledge, and
support vocabulary? (i.e., multiple means of repre-
sentation principle)

•• Has some aspect of this content been introduced pre-
viously? If not, how will I scaffold the instruction to
ensure that students understand the content for both
the computer science and content area standards?

•• How can I give students digital and non-digital
options for expressing what they know? (i.e., multi-
ple means of action/expression principle)

•• How will I provide models, feedback, and supports
for different levels of student proficiency?

•• How can I provide autonomy and choice to promote
self-regulation? (i.e., multiple means of engagement)

•• How will I incorporate the UDL guidelines and
checkpoints to formatively or summatively assess

http://udlguidelines.cast.org

Hutchison and Evmenova	 265

students’ progress toward the computer science and
content area standards and objectives?

Step 3: Digital Contribution to Instruction

Considerations guiding Step 3 of the CSIP+ model include
the following:

•• Does the inclusion of computer science content
enhance or support my content area goals?

•• Is my use of digital technology useful and relevant to
my instructional goals and outcomes?

Step 4: Digital Contribution to Instruction

Considerations guiding Step 4 of the CSIP+ model include
the following:

•• If using a digital tool, are there any potential logistical
constraints that will interfere with the instructional
goal or require excessive time or effort? (e.g., Does
the tool require individual accounts? Can students
save their work for later? Can students share work
completed with the tool? Is the tool navigation
intuitive?)

•• How can I reduce logistical concerns to maximize
instructional time and alignment with the instruc-
tional goals?

Step 5: Reflection and Instructional
Considerations

Considerations guiding Step 5 of the CSIP+ model include
the following:

•• Does the planned use of digital tools closely align
with the instructional goals and outcomes? Has
introduction of new strategies, tools, and options cre-
ated drift from my original goals?

•• Do I have a clear plan for collecting and evaluating
student work? (How will students submit digital
products? How will digital products be evaluated?)

•• Will any aspects of the physical environment need to
change, as a result of the instructional activities, to
create space, reduce sound, or minimize distraction?

Lesson Design Using the Model

In this section, an example is provided of how instruction
could be designed with the CSIP+ model. In Step 1, instruc-
tional goals and learning outcomes are determined by
selecting a content area standard and a computer science
standard that can be paired. For example, computer science

can be integrated into literacy instruction by pairing these
two standards:

•• CSTA1A-AP-12: Develop plans that describe a pro-
gram’s sequence of events, goals, and expected
outcomes.

•• CCSS.ELA-LITERACY.W.2.3: Write narratives in
which they recount a well-elaborated event or short
sequence of events; include details to describe
actions, thoughts, and feelings; use temporal words to
signal event order; and provide a sense of closure.

Based on these standards, an example of an instructional
goal is as follows: Students will write a narrative essay
describing a problem they have had and how they broke the
problem into smaller steps to solve it. Students will use a
graphic organizer to decompose their story into program-
mable scenes. Students will use Scratch or Scratch Jr. to
create an animation illustrating each step of the problem
they wrote about and how it was solved. As part of Step 1,
learner characteristics and barriers in the classroom that
might interfere with students reaching these goals should
also be considered. For example, some students may have
difficulty handwriting a story and may need alternative
ways to produce it (e.g., typing, using word prediction,
using speech-to-text, drawing). Some students may be over-
whelmed with the task of describing something step-by-
step and may need multiple options for planning their story
with various scaffolds and supports. Some students may
struggle to use Scratch or Scratch J. and may benefit from
using templates or step-by-step directions. These supports
will be planned in the next step.

In Step 2, the specific instructional approach and assess-
ment are considered. A brief example of how to approach
this lesson could be broken into the following steps:

1.	 Direct instruction: The teacher presents the word
“decompose” and asks students to express every-
thing they know about the meaning of the word. The
teacher leads a discussion of conceptions and mis-
conceptions about the term and explains that, in
computing, decomposition is the process of break-
ing down a task into smaller, more manageable
parts. It has many advantages. It helps us manage
large projects and makes the process of solving a
complex problem less daunting and much easier to
take on. The teacher helps the students see that this
process is also useful for writing tasks.

2.	 Modeling: The teacher models his or her thinking
about a task that can be decomposed into smaller
tasks, such as making breakfast, and how to use a
graphic organizer to break apart each part of the
task.

266	 Intervention in School and Clinic 57(4)

3.	 Guided practice: The teacher guides students in
thinking of a problem or task that can be broken into
steps and selects one of the ideas to guide students
in breaking apart (i.e., decomposing) the problem or
task. With guidance, the students add the example to
a graphic organizer of their own.

4.	 Independent practice: Students will think of a time
they have had to solve a problem or task and the
steps they had to take to solve it. Students will use a
graphic organizer to explain the problem and break
apart each of the smaller steps they had to take to
solve it. Students will then consider how they could
turn each of the steps into a story scene that could be
programmed into an animation illustrating each step
of the problem and how it was solved. Students will
use Scratch Jr. to create their animation illustrating
a problem and how it was solved.

The teacher would then consider all the remaining ques-
tions listed for Step 2 and make further changes that may
include the following:

•• Providing multiple means of engagement (through-
out the lesson)
|| Offering choice in whether students work in a

group or individually, choice in the problem stu-
dents want to describe, as well as choice in the
characters and backgrounds students choose in
Scratch Jr.

|| Proving templates or step-by-step directions for
planning the story in Scratch Jr.

•• Providing multiple means of representation
|| Adding illustrations and examples to the oral dis-

cussion or showing a video model (during direct
instruction and guided practice)

|| Activating background knowledge on narratives,
using graphic organizers, and using Scratch Jr.
(during direct instruction and guided practice)

|| Offering various scaffolds and supports for inde-
pendent practice such as sentence starters in the
graphic organizer

•• Providing multiple means of action and expression
(during independent practice)
|| Allowing students to write, type, use speech-to-

text, or draw their story

In Step 3, consideration is given to whether the inclusion
of computer science content enhances or supports the con-
tent area goals and if the use of digital technology is useful
and relevant to my instructional goals and outcomes. In this

case the computer science content is well-aligned with the
content area goal. However, the teacher may consider that it
may not be necessary for the students to use the digital tech-
nology, Scratch Jr., as planned since it useful, but not neces-
sary, for meeting the computer science standard.

In Step 4, consideration is given to the potential logisti-
cal constraints that may interfere with the instructional goal
or require excessive time or effort. Then, efforts should be
made to reduce logistical concerns to maximize instruc-
tional time and alignment with the instructional goals. In
this example, since the use of Scratch Jr. is not necessary for
meeting the computer science of literacy standard, the com-
plexity of the lesson could be reduced by making Scratch Jr.
an optional way for students to express their understanding
instead of a requirement. Making Scratch Jr. optional, and
providing other ways for students to express their under-
standing, makes it less likely that the logistical challenges
will interfere with the overall goal of the lesson.

In Step 5, reflection on the lesson ensures that all aspects
of the sample are aligned with the original content standards
and instructional goal for the lesson. The introduction of
new strategies, tools, and options has not created drift from
the original goals. However, reflection on the assessment
would reveal that the teacher still needs to develop a clear
plan for evaluating student work, which should include
multiple means of action and expression for students.
Furthermore, the physical environment still needs to be
considered to determine how to minimize distraction if
some students are working on digital devices or working
collaboratively.

Conclusion

Although little is known about how to best support ele-
mentary students with high-incidence disabilities in learn-
ing computer science, the CSIP+ instructional planning
model provides a useful starting point for helping teachers
consider the intersections of content area instruction and
computer science, as well as how to design this instruction
so that is accessible and effective for all students. The
CSIP+ planning model may also promote awareness of
the need to provide all students with the opportunity to
learn computer science. The design of such instruction is
critical to ensure that it is accessible and effective for all
students.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Hutchison and Evmenova	 267

Funding

This work was partially supported by funding through the National
Science Foundation, Award #1837380.

References

Berland, M., & Wilensky, U. (2015). Comparing virtual and physical
robotics environments for supporting complex systems and com-
putational thinking. Journal of Science Education and Technology,
24, 628–647. https://doi.org/10.1007/s10956-015-9552-x

Bryant, D. P., Bryant, B. R., & Smith, D. D. (2017). Teaching
students with special needs in inclusive classrooms. SAGE.

CAST. (2018). Universal design for learning guidelines version
2.2. http://udlguidelines.cast.org

Code.org. (2019, July 11). 33 states expand access to K-12 com-
puter science education in 2019. https://medium.com/@
codeorg/32-states-expand-access-to-k-12-computer-sci-
enceeducation-in-2019-7d2357fe6f3d

Hutchison, A., Nadolny, L., & Estapa, A. (2016). Using coding apps to
support literacy instruction and develop coding literacy. Reading
Teacher, 69(5), 493–503. https://doi.org/10.1002/trtr.1440

Hutchison, A., & Woodward, L. (2014). A planning cycle for
integrating digital technology into literacy instruction. The
Reading Teacher, 67(6), 455–466.

Israel, M., Wherfel, Q. M., Pearson, J., Shehab, S., & Tapia,
T. (2015). Empowering K-12 students with disabilities to
learn computational thinking and computer programming.
Teaching Exceptional Children, 48(1), 45–52.

National Center for Education Statistics. (2017). The condi-
tion of education. https://nces.ed.gov/programs/coe/indica-
tor_cgg.asp

Rao, K., & Meo, G. (2016). Using universal design for learning
to design standards-based lessons. SAGE Open, 6(4), 1–12.
https://doi.org/10.1177/2158244016680688

Scratchjr.org. (2015). What is ScratchJr? http://www.scratchjr.
org/about.html

Shute, V., Sun, C., & Asbell-Clarke, J. (2017). Demystifying com-
putational thinking. Educational Research Review, 22, 142–
158. https://doi.org/10.1016/j.edurev.2017.09.003

Vee, A. (2017). Coding literacy. The MIT Press.
Wing, J. (2006). Computational thinking. Communications of the

ACM, 49(3), 33–36.

https://doi.org/10.1007/s10956-015-9552-x
http://udlguidelines.cast.org
https://medium.com/
https://doi.org/10.1002/trtr.1440
https://nces.ed.gov/programs/coe/indicator_cgg.asp
https://nces.ed.gov/programs/coe/indicator_cgg.asp
https://doi.org/10.1177/2158244016680688
http://www.scratchjr.org/about.html
http://www.scratchjr.org/about.html
https://doi.org/10.1016/j.edurev.2017.09.003

